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Abstract. An exact enumeration of rigid clusters is analysed using Pad6 approximants. 
The number of bond-diluted rigid clusters with nb bonds is found to grow like n b e b  

(2.165i-0.005)”b with 0, = 0.988, a value different from that of site-diluted rigid animals. 

Randomly diluted elastic networks have been investigated by many authors [ 1-61. 
There are several models one can consider. The isotropic model is not rotationally 
invariant. However, Alexander [7] has pointed out that this model is important in 
some amorphous materials which are under internal stress. There are three other 
models which are rotationally invariant, namely, the central force model [ 13, the bond 
bending model [8] and the granular disc model [9]. In the central force model, at the 
percolation threshold, a cluster is not rigid. As a result, one has the somewhat unrealistic 
phenomenon that the rigidity percolation threshold at p =pee, is much higher than the 
percolation threshold at p = p c .  For the bond bending model, prigid=pc in two 
dimensions, but this equality does not necessarily hold in high dimensions. Some 
authors [lo,  111 have observed the same unrealistic problem, which occurred in the 
central force model, in high dimensions. For the bond bending model, a linear chain 
is not rigid in three or higher dimensions. The bonds A and C of the configuration in 
figure 1 can be twisted without costing any energy. Thus, the rigidity percolation 
threshold in this model is higher than the percolation threshold in three dimensions. 
This is also seen in simulation in three dimensions [12]. In fact, the bond bending 
model can be viewed as adding a second-nearest-neighbour interaction to the central 
force model. If one adds third-nearest-neighbour interactions to the bond bending 
model, or adds second- and third-nearest-neighbour interactions to the central force 
model, it will have the same threshold as that of percolation for some lattices (e.g. 
honeycomb lattice) in three dimensions. In a cubic lattice, one needs an infinitely 
long-range interaction to make the rigidity percolation threshold coincide with percola- 
tion threshold. This is an appropriate model for which one can check the conjecture 

Figure 1. A cluster in three dimensions which is non-rigid for the bond bending model. 
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[5,12-141 f =  t +2v in three dimensions, where f is the bulk modulus exponent and 
t is the conductivity exponent. Generally in d dimensions, to make the thresholds 
coincide, one needs ( d (  d - 1)/2)th nearest-neighbour interactions, one can consider 
beams [15] rather than bonds, or invoke a granular disc model which also needs 
d ( d  - 1)/2 couplings in d dimensions. In the absence of such couplings, the threshold 
for the total rigidity is higher than that of percolation and some intermediate phase 
of partial rigidity is possible [ 161. Up to now almost all the work which has been done 
involves bond-diluted problems. Thorpe and Garboczi [ 171 have considered the site- 
diluted elastic networks using effective medium theory. Recently Prunet and Blanc 
[18] have enumerated the rigid clusters for the central force model on a triangular 
lattice for both site dilution (saturated clusters in their nomenclature) and bond dilution. 
They found that, for the site-diluted problem, the fraction number of clusters of n, 
sites which are rigid goes like n:’2 (0.46+0.01)”~. 

In this letter, we enumerated the rigid clusters using a different method. We found 
that, for the bond-diluted problem, the approximate series obtained by [ 181 overesti- 
mates the exact result by more than 10% in higher order. We extrapolated the exponent 
governing the growth of rigid clusters using Pad6 approximants [ 191. We also enumer- 
ated site-diluted rigid clusters and found the same series as [18]. 

For the bond-diluted central force model, a cluster with dangling bonds is non-rigid. 
Therefore, we first generated all possible boundaries of rigid clusters by enumerating 
one-loop diagrams embedded in the trangular lattice. Up to the order of p2’,  one need 
not worry about possible internal boundaries. Based on a given one-loop diagram, 
we then generated all the rigid clusters. By a rigid cluster, we mean that the number 
of zero-frequency modes of the cluster is 3. Therefore, in the harmonic central force 
model, the diagram in figure 2 is excluded. This algorithm has enabled us to calculate 
the series for rigidity percolation [20] to the order p 2 2 .  Using this algorithm, we 
calculated the bond-diluted rigid clusters to the order p2’ which took 10 CPU h on a 
VAX 11/785. From table 1 one can see that the error of the series in [ 181 is not within 
1 %  for the higher-order term. This is because the relation in [18] 

2n,- ribs 3 ( 1 )  

where ns is the number of sites in a cluster, nb is the number of bonds in a cluster, is 
no longer true when 15. Figure 3 is a configuration with 15 bonds which violates 
equation ( 1 )  and is responsible for the difference in the coefficient of p ” .  

If we assume that 

(2) 
-e  nb bA:b 

the series Z a,,$% will behave as ( 1  - hbp)”-’. We use Pad6 approximants to determine 
@b. Table 2 shows the data for the Pad6 approximants from which we obtained 

A bl  = 0.462 f 0.001 

@b = 0.988 * 0.001. 
(3) 

(4) 

Figure 2. A configuration which is non-rigid for the harmonic central force model. 
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Table 1. The number of bond-diluted rigid clusters on the triangular lattice. 

1 3 3 
2 0 0 
3 2 2 
4 0 0 
5 3 3 
6 0 0 
7 6 6 
8 0 0 
9 14 14 

10 0 0 
11 42 42 
12 1 1 
13 135 135 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

6 
448 
27 

1 647 
143 

6 219 
687 

24 271 
3 267 

98 427 
15 796 

409 281 

6 
460 

27 
1198 

143 
7 235 

687 
30 587 
3 321 

136 159 
16 589 

3 

9 

16 

26 
2 

38 
5 

Figure 3. A configuration which violates equation (1). 

Table 2. DIog Pad6 estimates of A;' (and 8,) for the bond-diluted rigid animals. 

n [ n  - I / n l  [ n l n l  [ n  + I / n l  

10 0.4618 (0.9857) 0.4624 (0.9880) 
11 0.4626 (0.9879) 0.4619 (0.9884) 0.4618 (0.9884) 
12 0.4618 (0.9884) 

We also analysed site-diluted rigid clusters using Pad6 approximants. We obtained 

A;' = 0.43+0.01 (5) 

e, = 0.52 * 0.01 ( 6 )  

assuming that ~ , - n n ; ~ s A ~ .  So the number of site-diluted rigid clusters with n, sites 
goes like n;0.52A>. For the total number of clusters on a triangular lattice, one [21] 
has A = 5.183*0.001 and 8 = 1.00*0.01 for site animals and A = 8.620*0.002 and 
8 = l.OO* 0.02 for bond animals. If we make the ratio between rigid site animals and 
site animals, we obtain an exponent in agreement with the results of [18]. Here one 
sees that site and bond rigid animals have different exponents in contrast to site and 
bond total animals. It was unexpected that site and bond rigid animals should be in 
different universality classes. In view of our results, we would like to see whether the 
bulk modulus exponent for the site-diluted problem is different from the bond-diluted 
problem for the central force model. 

In summary, we have calculated the exponent Ob for bond-diluted rigid animals 
which is found to be different from that of site-diluted rigid animals. 
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